The Waiting Time Problem

and a New Argument against Neo-Darwinism

GÜNTER BECHLY, PhD (paleontologist):
1999-2016 Curator for Amber and Fossil Insects at the State Museum of Natural History in Stuttgart
Senior Fellow with Discovery Institute's Center for Science \& Culture in Seattle, USA
Senior Scientist at Biologic Institute in Redmond, USA
Chairman of the German-speaking Center for BioComplexity \& Teleology in Nature

Explosions of Biological Novelty

Abrupt origins are the rule in all periods of Earth History, in all geographical regions, and all groups of organisms from protists, to plants, invertebrates and vertebrate animals.

Great Ordovician Biodiversification Event
Silurio-Devonian Terrestrial Revolution

Devonian Nekton Revolution

Odontode Explosion

Big Bang of Genus Homo

Carboniferous Insect Explosion
Triassic Radiations (Tetrapods, Dinos, Marine Reptiles)

Abominable Mystery (Flowering Plants)
Big Bang of Birds
Placental Mammal Explosion

[^0]
The Waiting Time Problem

The fossil record and population genetics combined do refute the mathematical feasibility of the Neo-Darwinian mechanism.

Geological available windows of time are much too short to accommodate the required genetic changes to arise and spread in the ancestral populations.

Paleontological Windows of Time

The fossil record provides very precise time frames for the appearance of certain groups of organisms and organs

Coordinated Mutations

Coordinated Mutations = two or more coincident genetic changes that only together produce an adaptive phenotypic effect that allows for selection to operate

The Waiting Time Problem ...

- Evolution is supposed to proceed by random mutation and natural/sexual selection
- Selection can only work on mutations with a positive or negative adaptive value
- At least some adaptive advantages require two or more coordinated mutations
- All mutations have two time constraints that depend on population size and generation time: the waiting time for a mutation to occur and the waiting time for the fixation of this mutation
- Does the history of life provide sufficient resources for evolution to accommodate these waiting times?

... is a Waiting Time Dilemma

- With large population the waiting time for a mutation to occur decreases, but fixation time increases (the same is true for neutral evolution)
- With small population sizes the waiting time for a mutation to occur increases, but fixation time decreases

Thus, there is no easy way for evolution to work around the waiting time problem!

Recombination does not Help

A potential counter argument might be that recombination allows for neutral mutations (about 75\% of all mutations) to occur separately in a population and to combine later by sexual recombination.

	Theoretical Population Biology Volume 53, Issue 3, June 1998, Pages 199-215	
Regular Aricle		
Waiting with and without Recombination: The Time to Production of a Double Mutant is		

However, Christiansen et al. (1998) have shown that "Recombination lowers the waiting time until a new genotypic combination first appears, but the effect is small compared to that of the mutation rate and population size".

Doing the Math

While the fossil record provides the data for the available time frame, the standard formula of population genetics allows to do the math.

All you need are reasonable estimates of the following three parameters that can be established by comparison with recent organisms:

- Mutation rate
- Effective population size per generation
- Generation turnover time

Discovery of the Problem

Behe \& Snoke (2004) and Michael Behe in his book The Edge of Evolution (2007) made the argument that the waiting time for two coordinated mutations is prohibitive for the Neo-Darwinian mechanism of evolution to work.

Behe used the example of malaria resistance against the chloroquine drug, which required two mutually dependent mutations. Applying these data on human evolution predicted a waiting time of 10^{15} years!

Example of Human Evolution

The mainstream Neo-Darwinian scientists Durrett \& Schmidt (2008) criticized Behe's argument and claimed that his calculated waiting time of 10^{15} years is unrealistic.

However, their own calculations also resulted in a prohibitive waiting time of 216 million years, since only about 6 million years are available since the split of the human lineage from the chimp lineage.

10C GENETICS
 Current Issue For Authors Editorial Board Submit a Manuscript

Example of Human Evolution

Sanford et al. (2015) used a computer simulation to calculate the following waiting times based on reasonable estimates for an ancestral hominin population of 10,000 individuals and a generation turnover time of 20 years:

- fixation of a specific point mutation: 1.5-15.9 million years
- fixation of a single codependent mutation: 85 million years

This is prohibitive considering 5% difference in the human vs chimp genome within 6 million years since the separation of their lineages.

Soll	THEORETICAL BIOLOGYAND EICAL MODELLIN
research	Open Access
The waiting time problem in a model hominin population	(1) ${ }^{\text {cosmaxat }}$

Discovery Institute - Research Project

... shall show that these are not exceptions but the rule, so that the waiting time problems represents a refutation of Darwinian evolution. It is a collaboration of Drs Douglas Axe (molecular biologist), Günter Bechly (paleontologist), Ann Gauger (molecular biologist), Ola Hössjer (mathematician), Paul Nelson (philosopher of biology), and Richard von Sternberg (evolutionary biologist).

In this multi-annual project we intend to do the calculations for a number of examples from protists, plants, invertebrate and vertebrate animals, covering most periods of earth history, and covering important key events in evolution.

A New Mathematical Model

Based on the mathematical models of Durrett \& Schmidt (2008) and Sanford et al. (2015) as well as Behrens \& Vingron (2010), we developed a new model, which does not depend on two specific mutation combinations, but allows for multiple combinations to work, and also incorporates back-mutations.

Example of Whale Evolution

Molecular Phylogenetics and Evolution
Volume 66, Issue 2, February 2013, Pages 479-506
Morris Goodman Memorial Symposium
A phylogenetic blueprint for a modern whale
John Gatesya, A. 브, Jonathan H. Geisler ${ }^{\text {b }}$, Joseph Chang ${ }^{\text {a }}$, Carl Buell ${ }^{c}$, Annalisa Bertad ${ }^{\text {d }}$, Robert W. Mereditha, e, Mark S. Springer ${ }^{\text {a }}$, Michael R. McGowen ${ }^{\dagger}$

Dorudon

Example of Whale Evolution

Richard von Sternberg did the math based on the formula in Durrett \& Schmidt (2008), and very generous estimates for an effective population size of 100,000 individuals per generation and a generation turnover time of 5 years. The result was a waiting time of 43.4 million years for a single event of two coordinated mutations.

Dr. Richard v. Sternberg
The fossil record shows that only 4.5 million years are available between still walking ancestors (Himalayacetus, 53.5 mya) and the first truly aquatic whales (49 mya, Basilosauridae). This transition requires complex engineering like ...

Example of Whale Evolution

- forelimbs transformed into flippers, reduction of hind limbs and pelvis, tail transformed into fluke (incl. ball vertebra for up and down movement)
- re-orientation of the fetus for subaquatic birth (tail-first)
- modification of mammary glands for nursing under water
- reorganization of kidney tissue for intake of salt water
- special lung surfactant (lung has to re-expand rapidly upon coming up to the surface)
- intra-abdominal counter-current heat exchange system (testes are inside the body next to the muscles that generate heat during swimming)

Example of Whale Evolution

from the DVD documentary Living Waters (2015) by Illustra Media

Example of Whale Evolution

In a public debate 2009 at Beverly Hills, famous paleontologist Dr. Donald Prothero, author of the book Evolution - What the Fossil Say and Why it Matters, was absolutely clueless how to respond to Dr. Richard Sternberg's argument, and apparently did not even understand it.

Species Longevity implies Saltationism

The waiting time problem is amplified by Prothero's own result that the longevity (lifespan) of a larger artiodactyl mammal species, which would include whales and their ancestors, is more than 4 million years!

The Species Pair Challenge

Why should anybody seriously believe that Indohyus / Pakicetus and Basilosaurus / Dorudon could diverge within 4-5 million years, including all the re-engineering from a terrestrial to a marine mammal?

The Species Pair Challenge

A challenge to Darwinists: Find in the data base of TimeTree.org among 97k living species a single pair of species, that according to molecular clock estimates have diverged about 5 million years ago, and exhibit a remotely similar morphological divergence to Pakicetus and Basilosaurus.

©
TIMETREE
THE TIMESCALE of LIFE

The Species Pair Challenge

Firs and cedars are conifers that diverged 141 million years ago.

TIMETREE
the timescale of LIFE

Abies spec.

The Species Pair Challenge

The common house fly and small house
fly diverged 48 million years ago.

©
 TIMETREE
 the timescale of LIFE

Musca domestica

Fannia scalaris

The Species Pair Challenge

The northern damselfly and the azure damselfly diverged 11.8 million years ago.

The Species Pair Challenge

The European common frog and the moor frog diverged 21.4 million years ago.

TLIMETREE
 THE TIMESCALE of LIFE

Rana arvalis

The Species Pair Challenge

The Galapagos land iguanas and marine iguanas diverged 18.2 million years ago.

Conolophus

The Species Pair Challenge

The two warbler species Phylloscopus nitidus and P. bonelli diverged 15.2 million years ago (at least 4-7 mya).

May still hybridize?

TIMETREE
 the timescale of LIFE

Genetic differentiation and phylogenetic relationships of Bonelli's Warbler Phylloscopus bonelli and Green Warbler P. nitidus

Andreas J. Helbig, Ingrid Seibold, Jochen Martens and Michael Wink

The Species Pair Challenge

The house sparrow and tree sparrow diverged 10.2 million years ago.

Still can hybridize!

The Species Pair Challenge

House mouse and rats diverged 20.9 million years ago (at least 12 mya).

든 TIMETREE
 THE TIMESCALE of LIFE

SCIENTIFIC REP:RTS
OPEN Corrected placement of Mus-
Rattus fossil calibration forces precision in the molecular tree of

rodents

Yur Kimuradt, Meliss T. R. Hawkins², Molly M. McDonough², Louis L. Jacobs \& \&
Lawrence J. Flynns
wrence J. Flynns

The Species Pair Challenge

Cattle and European bison diverged 4.88 million years ago.

C든 TIMETREE
 THE TIMESCALE of LIFE

Can still hybridize as beefalo!

Bison bonasus

Bos taurus

The Species Pair Challenge

다

TIMETREE
the timescale of LIFE

Can still hybridize as mule!

Equus caballus

Equus asinus

The Species Pair Challenge

Asian and African elephants diverged 25.9 million years ago (at least 7.6 mya).

African savannah and forest elephants diverged 7.6 million years ago (at least 4 mya).

TIMETREE
 THE TIMESCALE of LIFE


```
\(\mathrm{PLOS}_{\text {atooor }}\)
```

Proboscidean Mitogenomics: Chronology and Mode of Elephant Evolution Using Mastodon as Outgroup

The Species Pair Challenge

Spectacled bear and Asian black bear diverged 16.5 million years ago.

TIMETREE
the timescale of LIFE

Can still hybridize in captivity!
Tremarctos ornatus Ursus (Selenarctos) thibetanus

The Species Pair Challenge

River otter and brown fur seal diverged 40 million years ago.

G TIMETREE
 THE TIMESCALE of LIFE

Lutra lutra
Arctocephalus pusillus

The Species Pair Challenge

Hippo and pygmy hippo diverged 9.6 million years ago.

G TIMETREE
THE TIMESCALE of LIFE

Hippopotamus amphibius

Choeropsis liberiensis

The Species Pair Challenge

The common dolphin and the bottlenose dolphin diverged 3.99 million years ago.

Delphinus delphis
Tursiops truncatus

The Species Pair Challenge
 \section*{}

r

Chimp and gorilla diverged 9.06 million years ago (humans 6.7 mya).

Pan troglodytes

Homo sapiens

The Species Pair Challenge

Two following two facts need an explanation:
1.) There are many examples of fossil species pairs with very different body plans that diverged within 5 (± 5) million years. Even though only about 1\% of all extinct species are preserved in the fossil record of about 350 k described species.
2.) There are no living species pairs with even remotely similar differences in body plan that are dated to have diverged in a similar time frame. Even though there are an estimated 8.7 million living species, of which 2 million have been described.

What is the Bayesian likelihood that not a single living species exhibits the same phenomenon that is so common in the fossil record? Basically zero!

Questions \& Answers

[^0]: ScienceDaily
 Your source for the latest research news
 Science News
 from research organizations
 Big Bang Theory Of Human Evolution?
 Date: January 11, 2000
 Source: University of Michigan
 Summary: Two million years ago somewhere in Africa, a small group of individuals became sep. arated from other australopithecines. This population bottleneck led to a series of sudden, interrelated changes---in body size, brain size, skeletal proportions, and be-havior---that jump-started the evolution of our species.

